ÁLGEBRA LINEAL

ÁLGEBRA LINEAL

17,00 €
IVA incluido
Agotado
Editorial:
ACCI (ASOCIACIÓN CULTURAL Y CIENTÍFICA IBEROAMERIC
Año de edición:
Materia
Matemáticas
ISBN:
978-84-16549-21-4
Páginas:
228
Encuadernación:
Rústica
Idioma:
Castellano

El libro Álgebra Lineal consta de siete capítulos y un apéndice.
En el primer capítulo se estudian los Espacios Vectoriales desde un punto de vista abstracto, aunque poniendo cierto énfasis en el espacio real n-dimensional. Los conceptos de Subespacio Vectorial, Dependencia Lineal, Sistemas Generadores, Bases, Dimensión, el Método de Reducción y los subespacios Intersección y Suma se explican ofreciendo ejemplos ilustrativos. También se introduce el Espacio Vectorial Cociente.
El segundo capítulo está dedicado a las Aplicaciones Lineales, Matrices y Determinantes. En él se explican los conceptos de Núcleo, Rango, Clasificación de aplicaciones lineales, así como los problemas de Cambios de Base tanto en espacios vectoriales como en aplicaciones lineales con las fórmulas matriciales correspondientes. La introducción del Espacio Dual resulta útil para comprender ciertas propiedades matriciales.
En el capítulo tres se aplica todo lo anterior para estudiar y resolver Sistemas de Ecuaciones Lineales, con el Teorema de Rouché y la Regla de Cràmer como métodos estelares, pasando por el método de Eliminación de Paràmetros.
Los capítulos cuatro y cinco se dedican a la obtención de matrices reducidas, es decir, con muchos coeficientes nulos, semejantes a una matriz cuadrada dada, es decir, la Diagonalización de Matrices y Endomorfismos, así como la Forma Canónica de Jordan. El Teorema de Cayley-Hamilton aparece como ejercicio.
En el capítulo seis se hace uso de muchos de los resultados obtenidos en los anteriores capítulos para estudiar las Formas Bilineales y las Formas Cuadráticas. Se explica y demuestra el Criterio de Sylvester de los Determinantes Principales.
El último capítulo se dedica al estudio de los Espacios Euclídeos, es decir, de aquellos que poseen un Producto Escalar, i.e., una forma bilineal simétrica positiva y no degenerada, cuya forma cuadrática asociada es el cuadrado de la Norma euclídea, lo que nos sirve para introducir el ángulo entre dos vectores, así como el poder hablar de Ortogonalidad, Complemento y Proyección Ortogonal. Se estudian las Isometrías Vectoriales con bastante detalle.
El Apéndice final consiste en un estudio riguroso de las Matrices Circulantes desde un punto de vista que tiene que ver con la actuación del Grupo Dihédrico sobre vectores. Ello nos permite verificar cómodamente cuando una matriz tal es invertible o diagonalizable.

Otros libros del autor

  • ÁLGEBRA LINEAL REVISITADA *
    FERRER LLOPIS, JESÚS
    El libro que presentamos pretende ofrecer a los estudiantes de carreras científicas un tratamiento completo y minuciosamente explicado de todos los conceptos propios del Algebra Lineal. Empezando por los Espacios Vectoriales, Matrices y Determinantes, abordamos el problema de la Reducción de Matrices y Endomorfismos, para finalizar con el estudio de los Espacios Euclídeos, p...
    Disponible

    17,00 €